Bayesian quantile regression for single-index models
نویسندگان
چکیده
منابع مشابه
Bayesian quantile regression for single-index models
Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian inference of quantile regression models, we develop a fully Bayesian approach to fitting single-index models in conditional quantile regression. In this work, we use a Gaussian process prior for the unknown nonparametric link function and a Laplace distribution on the index vector, with the latter motivated by the...
متن کاملSingle index quantile regression for heteroscedastic data
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. Linear and nonlinear QR models have been studied extensively, while recent research focuses on the single index quantile regression (SIQR) model. Compared to the single index mean regression problem, the fitting and the asymptotic theory of the SIQR model are more complicated due to...
متن کاملTest for single-index composite quantile regression
It is known that composite quantile regression estimator could be much more efficient and sometimes arbitrarily more efficient than the least squares estimator. In this paper, tests for the index parameter and index function in the single-index composite quantile regression are considered. The asymptotic behaviors of the proposed tests are established and their limiting null distributions are d...
متن کاملEstimation of single-index quantile regression Model
Abstract The conditional quantile function m(X) of response variable Y given the value of covariate X is modeled through a single-index model, i.e. m(X) = m(θ 0 X) for some unknown parameter vector θ0. An iterated algorithm is proposed to estimate θ0. To establish the root-n consistency of the estimator, we prove a convexity lemma for almost sure convergence, parallel to the results by Pollard ...
متن کاملBayesian inference for structured additive quantile regression models
Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2012
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-012-9321-0